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Abstract. We show that there are effective three- and higher-body interactions
generated by the two-body collisions of atoms confined in the lowest vibrational
states of a three-dimensional (3D) optical lattice. The collapse and revival
dynamics of approximate coherent states loaded into a lattice are a particularly
sensitive probe of these higher-body interactions; the visibility of interference
fringes depend on both two-, three- and higher-body energy scales, and these
produce an initial dephasing that can help explain the surprisingly rapid decay
of revivals seen in experiments. If inhomogeneities in the lattice system are
sufficiently reduced, longer timescale partial and nearly full revivals will be
visible. Using Feshbach resonances or control of the lattice potential it is possible
to tune the effective higher-body interactions and simulate effective field theories
in optical lattices.
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1. Introduction

The collapse and revival of matter-wave coherence is an expected consequence of two-body
atom–atom interactions in trapped Bose–Einstein condensates (BECs) [1]–[4]. Collapse and
revival of few-atom coherent states in optical lattices has been seen in a number of experiments,
first in single-well lattices [5] and subsequently in double-well lattices [6, 7]4. In these
experiments, a BEC is quickly loaded into a fairly deep three-dimensional (3D) lattice such that
the quantum state approximately factors into a product of coherent states localized to each lattice
site [8]–[10]. Each coherent state, which is a superposition of different atom-number states,
initially has a well-defined phase. If the lattice potential is quickly turned off before atom–atom
interactions have a significant influence, the coherent states released from confinement at each
site expand and overlap resulting in interference fringes in the imaged atom-density. However,
if the atoms are held in the lattice for a longer duration before release, interactions will play a
significant role by causing the phases of the different atom-number states in the superposition
at each site to evolve at different rates. This will result in a dephasing of the coherent state,
and a subsequent collapse of the interference fringe visibility after the atoms are released.
For atoms in a homogeneous lattice with two-body interactions and negligible tunneling, the
coherent states at each lattice site are predicted to revive when the atom-number component
states simultaneously re-phase after multiples of the time t2 = 2π h̄/U2, where U2 is the two-
body interaction energy [1]–[5].

In addition to the expected two-body physics described above, we show that the data
in [5]–[7] should also contain strong signatures of coherent three- and higher-body interactions.
In contrast to the coherent dynamics described in this paper, recent experiments have studied
inelastic three-body processes, including recent observations of Efimov physics [11]–[13],
by tracking atom loss from recombination [14]. There has been a growing interest in three-
and four-body physics (e.g. [15]–[20]), and the role of intrinsic three-body interactions on
equilibrium quantum phases in optical lattices has been studied in [21]–[23]. The influence of
higher bands on the Mott-insulator phase transition has been analyzed in [24], and three-body
interactions of fermions and polar molecules in lattices have also been explored [25].

In this paper, we use the ideas of effective field theory to show that virtual transitions
to higher vibrational states generate effective, coherent three-body interactions between atoms
in the lowest vibrational states of a deep 3D lattice where tunneling can be neglected. More

4 These experiments focused on binomially split number states, but also included experiments on coherent states.
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generally, virtual excitations also generate effective four- and higher-body interactions giving
the non-equilibrium dynamics multiple energy scales. We also show that loading coherent states
into an optical lattice creates a sensitive interferometer for probing higher-body interactions. In
a sufficiently uniform lattice, multiple frequencies manifested as beatings in the visibility of the
collapse and revival oscillations give a direct method for measuring the energy and frequency
scales for elastic higher-body interactions. Remarkably, multiple-frequency collapse and revival
patterns have been seen in recent experiments [26].

Three-body interactions can also explain the surprisingly rapid damping of revivals seen
in [5]–[7], where the overall visibility of the interference fringes decays after roughly five
revivals (∼3 ms for the system parameters in [5]–[7]). This short timescale cannot be explained
in terms of tunneling or atom loss. For example, for the system parameters in [5]–[7], the
tunneling-induced decoherence timescale has been found to be a factor of 10–100 times too
long [27], and the atom loss from three-body recombination [14] appears to be negligible [26].
The latter observation is consistent with the expected three-body recombination timescales for
87Rb in a lattice5.

The damping of revivals can be partially explained by the expected variation in U2 over a
non-uniform lattice due to an additional harmonic term in the trapping potential. Inhomogeneity
in U2 causes dephasing due to the variation in the revival times for coherent states at different
sites; however, the estimated 3–5% inhomogeneity of U2 should allow as many as 10–20 revivals
compared to the ∼5 seen in [5]–[7]. In contrast, we show below that coherent three-body
interactions can cause dephasing of coherent states at each lattice site after only a few revivals.

The effective theory in this paper describes the low-energy, small scattering length, small
atom number per lattice site regime, for deep 3D lattices with negligible tunneling. These
approximations are reasonable for the experiments in [5]–[7]. Extensions of the analysis might
include tunneling, including second-order [28] and interaction-driven [29] tunneling, and the
incorporation of intrinsic higher-body interactions. Effective field theory has also proven to be
an important tool in the large scattering length limit [12]. It would be particularly interesting
to simulate the controlled breakdown of the effective theory developed here by increasing the
scattering length or atom number, or by tuning other lattice parameters. Looking beyond the
realm of atomic physics, our analysis suggests interesting possibilities for using optical lattices
to test important mechanisms in effective field theory [30].

In section 2, we construct a multimode Hamiltonian Ĥ that we use to obtain an effective
single-mode Hamiltonian H̃eff. In section 3, we describe the physical processes that generate
higher-body interactions. In section 4, we estimate the effective three-body energy. In section 5,
we show how the coherent three-body interactions modify the collapse and revival dynamics.
Finally, we summarize our results in section 6.

2. Effective three-body model for neutral bosons in an optical lattice

A many-body Hamiltonian for mass ma neutral bosons in a single spin state can be written as

H=

∫
ψ̂† H0ψ̂dr + 1

2

∫
ψ̂†(r)ψ̂†(r′)V2(r, r′)ψ̂(r)ψ̂(r′) drdr′

+1
6

∫
ψ̂†(r)ψ̂†(r′)ψ̂†(r′′)V3(r, r′, r′′)ψ̂(r)ψ̂(r′)ψ̂(r′′) drdr′dr′′ + · · · , (1)

5 Using the three-body loss rate ' 6 × 10−30 cm6 s−1, the loss rate for n atoms in a 40 kHz lattice site is 2.5n2 s−1

and the lifetime for n = 3 atoms is & 60 ms.
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where Vm are intrinsic m-body interaction potentials, and H0 is the Hamiltonian for a single
particle in the optical lattice. We set Vm>2 = 0 to focus on the physics of effective interactions
induced by V2. In experiments, the effect of intrinsic and effective interactions are both present.

It is our goal to construct a low energy, effective Hamiltonian H̃eff for describing a small
number of atoms in the vibrational ground state of a lattice site, while incorporating leading-
order corrections from virtual excitation to higher bands. In the quantum mechanical approach,
Huang et al [31] have shown that a local regularized delta-function potential V2(r, r′)∝

δ(3)(r − r′)(d/d%)%, where % = |r − r′
|, can be used to obtain the low-energy scattering for

two particles. To go beyond the two-particle case, we find it convenient to instead use
the renormalization methods of quantum field theory and the non-regularized delta-function
potential

V2(r, r′)= g2δ
(3)(r − r′). (2)

We regularize the theory in perturbation theory by using a high-energy cutoff3 in the sum over
intermediate states, which is equivalent to using a regularized (non-singular) potential. We view
3 as a physical threshold beyond which the low-energy theory fails. We note that the low-energy
physics does not, in the end, depend on the method of regularization, and that the physical
results found below after renormalization are insensitive to 3. The key observation is that even
if a fully regularized form of V2 is used renormalization is still required recognizing that the
bare parameter g2 is not the physical (renormalized) coupling strength g̃2. (In the following, we
use a tilde to distinguish between bare and renormalized parameters.)

Employing renormalized perturbation theory [30], we write g2 = g̃2 + c, where

g̃2 =
4π h̄2ascat

ma
+O(a2

scat) (3)

is chosen to reproduce the exact, low-energy limit given in [32] for two atoms in a spherically
symmetric harmonic trap, and ascat is the scattering length at zero-collisional energy. The first-
order approximation to g̃2 suffices for the calculation of the three-body energy at second order
given below. The value of the counter-term c, which cancels the contributions to the two-
body interaction energy that diverge with 3, is determined by the normalization condition
equation (3). The local Hamiltonian with counter-term and physical coupling parameter
becomes

H=

∫
ψ̂† H0ψ̂dr + 1

2(g̃2 + c)
∫
ψ̂†ψ̂†ψ̂ψ̂dr. (4)

To develop a low-energy effective theory for a deep optical lattice, we expand the field
over a set of bosonic annihilation operators âiµ and single particle wavefunctions φiµ(r) giving
ψ̂(r)=

∑
iµ φiµ(r)âiµ, where the indices µ= {µx , µy, µz} with µx,y,z = 0, 1, 2, . . . label 3D

vibrational states and i labels the lattice sites. To focus on the role of interactions we assume a
deep lattice with ns & 3 states per spatial dimension at each site, making tunneling of atoms in
the ground vibrational state µ= {0, 0, 0} ≡ 0 negligible on the timescale of interest [5]. Since
we are not considering the role of tunneling, for simplicity we use isotropic harmonic oscillator
wavefunctions at each site with frequency ω and length scale σ =

√
h̄/maω determined by

the (approximately) harmonic confinement within a single lattice well. Note that even with
tunneling neglected, anharmonicity of the lattice potential is a potentially significant effect.
We also expect our model to break down or to require significant modification for very

New Journal of Physics 11 (2009) 093022 (http://www.njp.org/)

http://www.njp.org/


5

shallow lattices or near the Mott-insulator phase transition where the effects of tunneling are
important [24], [33]–[35].

Inserting the expansion for ψ̂ into H, interchanging the order of integration over r and
summation over modes, and dropping terms that transfer atoms between sites (e.g. tunneling),
we obtain for each lattice site the multimode Hamiltonian Ĥ = Ĥ 0 + Ĥ 2, where

Ĥ0 =

∑
µ

Eµâ†
µâµ (5)

and

Ĥ2 =
1
2(Ũ2 + A)

∑
µνσλ

Kµνσλâ
†
µâ†

ν âσ âλ. (6)

For brevity we suppress the lattice site index i . The single-particle energies are Eµ = (µx +µy +
µz)h̄ω, setting the ground-state energy E0 ≡ E{0,0,0} = 0. The two-body interaction energy for
ground state atoms is

Ũ2 =
g̃p

(2π)3/2σ 3
=

√
2

π
h̄ω(ascat/σ), (7)

and A = (2π)−3/2c/σ 3 is the counter-term in units of energy. The matrix elements

Kµνγ δ = (2π)3/2σ 3

∫
φµφνφγφδdr (8)

are normalized so that K0000 = 1, and they vanish for transitions that do not conserve parity. It
should be noted that, when there is a cutoff in the sum over modes, both the regularized and
non-regularized delta-function potential lead to the same Hamiltonian Ĥ and matrix elements
in equation (8), and thus they produce the same results in the regularized (cutoff) quantum field
theory. We emphasize that after the renormalization of the two-body interaction energy, the
induced three-body interaction energy is insensitive to the cutoff3. We develop the perturbation
theory in the small parameter ξ defined by

ξ ≡
Ũ2

h̄ω
=

√
2

π

ascat

σ
+O(a2

scat). (9)

The total interaction energy for n atoms in the vibrational ground state in the single mode
per site approximation is Eint = Ũ2n(n − 1)/2. Commonly, a single-mode approximation is
made based on the two-body interaction energy per particle being much less than the band
gap, i.e. Eint/n = Ũ2(n − 1)/2 � h̄ω or nξ � 1. For 87Rb with scattering length ascat ' 5.3 nm
and a lattice with ω/2π ' 30 kHz, we have Ũ2/h ' 2.0 kHz, and ξ = 0.07. We will use these
as typical system parameters in the following analysis. With ξ = 0.07, the single mode per
site condition n � ξ−1

∼ 15 is easily satisfied and the influence of higher bands will produce
only small (though important) corrections. For coherent states, for example, we show that small
three-body energies can lead to large phase shifts over time resulting in interferometric-like
sensitivity to higher-body and higher-band processes.

To obtain an effective Hamiltonian H̃eff, we use the multi-mode Hamiltonian Ĥ = Ĥ0 + Ĥ2

to compute the atom-number-dependent energy shift for atoms in the vibrational ground state.
Our approach is essentially equivalent to the effective field theory procedure of summing up to
a cutoff over all ‘high-energy’ modes µ with Eµ > h̄ω, which generates a low-energy effective
theory with all consistent local interactions. We obtain an effective Hamiltonian H̃eff for the
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µ= 0 mode that is valid in the low-energy regime Eint/n ∼ nŨ2 � h̄ω, which is consistent with
the single mode approximation discussed above. Of course the multimode Hamiltonian Ĥ itself
is an effective Hamiltonian which is only valid for energy scales Eµ + Eint/n � h̄/(maa2

scat).
In the case of atoms confined in a deep well, the effective Hamiltonian for Ũ2 � h̄ω is

H̃eff = E0â†â +
∑
m>1

Ũm â†m âm/m!, (10)

where â† creates an atom in a renormalized ground vibrational state. The E0â†â term vanishes
since we set E0 = 0. The dominant term in H̃eff is the two-body energy, and the higher-body
interaction energies scale as nŨm/Ũm−1 ∼ (nŨ2/h̄ω)∼ nξ � 1.

The energies Ũm can be computed in perturbation theory in the small parameter ξ using
Ĥ to find the energy of n atoms in the ground vibrational mode. At mth order in ξ , all local
interactions up through the (m + 1)-body term H̃m+1 = Ũm+1â†m+1âm+1/(m + 1)! are generated.
In this paper, we work to second order in ξ for which the effective Hamiltonian is

H̃eff = Ũ2â†2â2/2 + Ũ3â†3â3/6. (11)

Using n̂ = â†â and [â, â†] = 1, the two- and three-body terms can be written as â†2â2
=

n̂(n̂ − 1) and â†3â3
= n̂(n̂ − 1)(n̂ − 2); the latter expression shows explicitly that the effective

three-body interaction only arises when there are three or more atoms in a well. Eigenstates of
H̃eff with n atoms have energies

Ẽ(n)= Ũ2n(n − 1)/2 + Ũ3n(n − 1)(n − 2)/6. (12)

Note that the three-body energy scales as n3 and thus its influence relative to the two-body term,
though small, can be tuned by changing the number of atoms in a well.

3. Mechanism for effective interactions

We now describe the virtual processes that give rise to effective m-body interactions in a deep
lattice. Writing the perturbative expansion for the energy of an n atom state |n〉 through second
order as Ẽ(n)= E (0)(n)+ E (1)(n)+ E (2)(n), the zeroth-order energy is E (0)(n)= E0n = 0,
recalling that E0 = 0. The first-order energy shift, treating Ĥ2 as the perturbation Hamiltonian,
is the usual expression

E (1)(n)= 〈n|Ĥ2|n〉 = Ũ2n(n − 1)/2. (13)

This is the leading order result for the two-body interaction energy and, setting n = 2, the
renormalization condition equation (7) shows that A = 0 to first order in Ũ2. Figure 1(a)
represents this first-order process.

The second-order energy shift can be written as

E (2)(n)= −
Ũ 2

2

4

3∑
µ>ν

sµνK 2
µν

∣∣〈µν| â†
µâ†

ν â0â0 |n〉
∣∣2

Eµν

+ An(n − 1)/2 (14)

with Kµν ≡ Kµν00 and µ> ν. The O(Ũ 2
2 ) counter-term A now appears. At this order, A is

determined by the renormalization condition Ẽ(2)= E (0)(2)+ E (1)(2)+ E (2)(2)= Ũ2, implying
that E (2)(2)= 0. The sum is over intermediate states |µν〉 ≡ â†

µâ†
ν â0â0 |n〉 with energy Eµν =

Eµ + Eν > 0; this excludes theµ= ν = 0 state. For regularization purposes we introduce a high-
energy cutoff that limits the sum to Eµν 63. The factor sµν = {4, 1} if {µ= ν, µ 6= ν} comes
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Figure 1. The effective two-body interaction energy Ũ2 is given through second
order by diagrams (a)–(d). Diagram (d) is the counter-term that cancels the
diagrams (b) and (c), fixing Ũ2 as the physical (renormalized) two-body energy.
Diagrams (f)–(i) are examples of processes contributing to the effective three-
body interaction energy Ũ3, represented by diagram (j). Diagram (g) gives the
leading order contribution, assuming U3 = 0; it shows how an effective three-
body interaction involving three distinct incoming particles arises at second order
in perturbation theory. Diagrams (h) and (i) are two of the effective three-body
processes that arise at third order (others are not shown). If the bare three-body
vertex shown in (f) does not vanish additional three (and higher) body counter-
terms are also required.

from the two equivalent terms â†
µâ†

ν and a†
ν â

†
µ that appear in Ĥ2. Each term in E (2) involves a two-

body collision-induced transition to a virtual intermediate state. For example, the state |1x1x〉

corresponds to two atoms both excited along the x-direction with energy E11 = 2h̄ω (note that
K 2

11 = 1/4 for this transition), with the remaining n − 2 atoms left in the µ= 0 mode. Because
collisions conserve parity, contributions from states like |1x1y〉 vanish.

The crucial observation is that the series in equation (14) separates into two distinct sums
corresponding to two-body and three-body interactions, respectively, i.e.

E (2)(n)= δU2n(n − 1)/2 + δU3n(n − 1)(n − 2)/6, (15)

where δU2 includes the counter-term contribution A from equation (14). For µ 6= 0 and ν 6= 0
intermediate states, |〈µν|â†

µâ†
ν â0â0 |n〉|

2
= κn(n − 1) where κ = {2, 1} if {µ= ν, µ 6= ν}, with

the factor of 2 resulting from Bose stimulation when both atoms transition to the same excited
state. Because these terms are proportional to n(n − 1) they contribute to the two-body energy
shift δU2. A diagram representing this two-body process, with two atoms colliding, making
transitions to virtual excited vibrational states, and then returning to the ground state after a
second collision with each other, is shown in figure 1(b). The µ 6= 0 virtual states and µ= 0
vibrational ground states are represented by dashed and solid lines, respectively.

The origin of the three-body energy can be seen by examining the µ > 0, ν = 0
intermediate states. We have

| 〈µν| â†
µâ†

0 â0â0 |n〉 |
2
= n(n − 1)2 = n(n − 1)+ n(n − 1)(n − 2), (16)

showing that these terms generate both effective two- and three-body energies. The extra factor
of (n − 1) in equation (16) results from Bose stimulation of an atom back into the µ= 0
state when two atoms collide but only one makes a transition to an excited state. Figure 1(c)
shows the two-body process corresponding to the n(n − 1) term in equation (16). Figure 1(d)
shows the counter-term A whose value is determined such that it cancels the contributions
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from figures 1(b) and (c), thereby maintaining, through second order, the renormalization
condition that the parameter Ũ2 is equal to the physical two-body energy. To arbitrary order the
renormalization condition determines A such that all higher-order two-body diagrams cancel,
as represented by figure 1(e).

Figure 1(g) shows the effective three-body process corresponding to the n(n − 1)(n − 2)
term in equation (16). This process gives the leading-order contribution to δU3 and generates a
three-body interaction energy Ũ3 = U3 + δU3 even if the bare U3, represented by figure 1(f),
vanishes. More generally, we expect U3 6= 0, but nevertheless the contribution to Ũ3 given
by δU3 can be a significant (possibly even dominant) correction. Looking at figure 1(g), we
see that two initial µ= 0 atoms collide giving rise to one µ 6= 0 atom that subsequently
collides with a third, distinct µ= 0 atom. In figure 1(g) there are three distinct incoming atoms
resulting in an effective three-body interaction mediated by the µ 6= 0 intermediate state. The
renormalized three-body interaction energy is represented in figure 1(j) by a square vertex with
three incoming and outgoing particles. Figures 1(h) and (i) show examples of two different
processes contributing to Ũ3 at third order in ξ ; they illustrate how higher-order processes,
including counter-terms, arise. Their contributions, and other third-order processes not shown,
are not explicitly computed below. At third order, effective four-body interactions also arise.

Note that there are two types of diagrams in figure 1: tree diagrams (e.g. figure 1(g)) and
loop diagrams (e.g. figure 1(b)). In general in quantum field theory the contributions from some
loop diagrams diverge with the cutoff 3, necessitating the need for renormalization, whereas
the contributions from tree diagrams are finite [30]. We will see this behavior explicitly below.
In fact, at mth order in ξ , there will be a set of tree diagrams giving a finite, leading-order
contribution to the effective (m + 1)-body interaction energies Ũm+1. We note that even if all
intrinsic higher-body interactions exactly vanish there will be effective m-body interactions
and associated energy scales Ũm generated by the two-body interactions. Consequently, the
non-equilibrium dynamics of n atoms in the ground vibrational mode, when nξ � 1, will be
characterized by a hierarchy of frequencies (Ũ2/h, Ũ3/h, . . . , Ũm/h).

4. Estimate of the effective three-body interaction energy

Returning to equation (14) for the second-order energy shift and separating it into two- and
three-body parts, we find that

δU2 = −Ũ 2
2

(
3∑
µ,ν

K 2
µν/Eµν

)
+ A, (17)

and

δU3 = −6Ũ 2
2

 3∑
µ>0

K 2
µ0/Eµ0

. (18)

In the expression for δU2 the sum is over all µ and ν (both µ > ν and ν > µ) except for the
µ= ν = 0 mode. Similarly, in the expression for δU3 all µ except for µ= 0 are summed over.

As expected, the sum
∑3

µ,ν K 2
µν/Eµν corresponding to the second-order, 1-loop diagram

in figure 1(b) diverges with 3, reflecting the divergent relationship between the bare U2

and renormalized Ũ2 energy parameters. In fact, the sum scales with the cutoff as 31/2.
The renormalization condition that Ẽ(2)= Ũ2 determines A by requiring that δU2 = 0. To
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second-order, the interaction energy of n atoms is thus

Ẽ(n)= Ũ2n(n − 1)/2 + δU3n(n − 1)(n − 2)/6, (19)

assuming Ũ3 = δU3.
After canceling the two-body corrections with A, the remaining second-order term gives an

induced three-body energy that is insensitive to 3: the quantity
∑3

µ>0 K 2
µ0/Eµ0 corresponding

to the second-order tree diagram in figure 1(g) converges. Writing

δU3/h̄ω = −βξ 2, (20)

this sum can be solved analytically for a spherically symmetric harmonic trap in the 3→ ∞

limit, and we find6

β = 4
√

3 − 6 + 6 log

(
4

2 +
√

3

)
' 1.34. . . . (21)

Cutting off the sum at Eµν/h̄ω 63/h̄ω = 4 already gives β ' 1.30 showing the rapid
convergence of the series. The convergence of this sum is an example of the generic behavior
that contributions from tree diagrams are finite. If the bare U3 is zero or sufficiently small, the
effective three-body energy is negative, giving attractive three-body interactions, and reducing
the total interaction energy for both positive or negative Ũ2.

We expect significant corrections due to the anharmonicity of the true lattice potential.
The single-particle energies of higher vibrational states are lowered on the order of the recoil
energy ER, defined as the gain in kinetic energy for an atom at rest that emits a lattice photon.
This leads to a decrease of the energy denominator in equation (14) and, for the typical system
parameters considered here, this can give an estimated correction to Ũ3 of 10% or more. The
matrix elements Kµν will also have corrections. These effects can be computed numerically
using single-particle band theory.

We have defined our perturbation theory around the zero-collisional energy limit, but in
a trap the collision energy of ground state atoms is of the order of h̄ω. As shown in [36], an
improved treatment replaces the zero-energy scattering length by an effective scattering length
defined as

−
1

aeff
= −

1

ascat
+

1

2
rek

2, (22)

where the effective range re is of the order of the van der Waals length scale
(
maC6/h̄

2
)1/4

away
from a Feshbach resonance, and the collision energy is h̄2k2/ma [37]. For 87Rb the van der
Waals length is approximately 8 nm. In a trap the ground vibrational state wavevector k ' σ−1

produces a fractional increase in scattering length of the order of (re/σ)ξ . By incorporating the
effective scattering length model we can extend the range of validity of our model.

Even neglecting these corrections, the perturbation theory generated by equations (2)
and (6) does not predict the two-body energy Ũ2 but instead uses the measured value, or the
exact result calculated by other methods such as Busch et al [32], as input from which δU3

is obtained. Similarly, the effective theory does not yield the intrinsic three-body interaction
energy U3, and therefore Ũ3 = U3 + δU3 must also be determined by either measurement or a

6 An analytic expression for Kµ0 can be obtained by expressing Kµ0 as an integral over a generalized Laguerre
polynomial, and then using an integral representation for the Laguerre polynomial. The sum in δU3 can then be
solved exactly with 3→ ∞.
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Figure 2. The figure shows Ũ3 and Ũ2, in units of h̄ω, versus ξ . The bold
line shows the induced three-body energy δŨ3 = Ũ3 = −βξ 2 with β = 1.34,
assuming the intrinsic energy U3 vanishes. The dashed line shows the leading-
order two-body energy Ũ2. The graphs extend beyond the regime of strict validity
of the perturbation theory, which requires ξn � 1, where n is the number of
atoms in a lattice well, to illustrate the overall scaling of the two- and three-body
energies. The collapse and revival experiments in [5]–[7] have ω/2π ∼ 30 kHz
and ξ ∼ 0.07, putting them well within the perturbative regime. The inset shows
Ũ3 for the range 0< ξ < 0.1.

theory of three-body physics if the intrinsic interaction energies Um>2 are nonzero. On the other
hand, the effective theory shows that even if Um>2 = 0 there are significant induced three- and
higher-body interactions, and if nonzero Ũm>2 are measured the effective contribution from two-
body processes must be taken into account before the intrinsic higher-body coupling strengths
can be extracted. Note that if nonzero bare (intrinsic) parameters Um>2 are included in our
model, additional counter-terms will be needed to cancel divergences, reflecting the need to
ultimately determine any intrinsic higher-body coupling strengths via either measurement or an
exact high-energy theory.

Assuming U3 ' 0, figure 2 shows Ũ2 = ξ h̄ω and Ũ3 versus ξ , including positive (ξ > 0)
and negative (ξ < 0) scattering lengths. Using ξ = 0.07 for 87Rb in a 30 kHz well gives
Ũ2/h ' 1.9 kHz and Ũ3/h ' −200 Hz. Using a Feshbach resonance [38] to change ascat and
thus ξ , or fixing ascat and changing the trap frequency ω, it is possible to tune the relative
strengths of the three-body (and higher-body) interactions. It would be interesting to explore
the breakdown of the perturbative model by increasing either ξ or the atom number n, or by
decreasing the lattice depth so that the influence of tunneling and higher-band effects increases.

5. Dynamics and decoherence of atom-number coherent states

We now investigate the influence of effective three-body interactions on the phase coherence of
an N atom non-equilibrium state |9(0)〉 = (

∑M
i=1 â†

i0|0〉/
√

M)⊗N , obtained by quickly loading
a BEC into a lattice with M sites. To a good approximation the state can be treated as the product
of coherent states [5, 10],

|9(0)〉 '

∏
i

exp(
√

n̄i â
†
i )|0〉 '

∏
i

|αi〉, (23)
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Figure 3. Collapse and revival visibility versus time t , with ξ = 0.07 and
n̄ = 2.5. Curve (i) shows the case with neither inhomogeneities nor three-body
interactions included. Curve (ii) shows the effects of ∼5% inhomogeneities
in U2. Curve (iii) shows the effects of three-body interactions with α = 1.34 but
no inhomogeneities. Note that the three-body mechanism influences the visibility
of revivals immediately, and it will be important even if inhomogeneities are
stronger than are shown in curve (ii). Curve (iv) shows the combined effects of
inhomogeneities and three-body interactions.

where âi |αi〉 = αi |αi〉 and |αi |
2
= n̄i is the average number of atoms in the i th site. A relative

phase φi j between sites i 6= j exists when 〈â†
i â j〉 = ηeiφi j and η 6= 0. The initial state |9(0)〉 has

η = n̄, and there are well-defined relative phases (φi j = 0 for all i, j in this case). In contrast,
the equilibrium Mott insulator state, achieved by much slower loading [34, 35], has approximate
number states in each well giving η ≈ 0, though there can be some degree of short-range phase
coherence [39]–[41].

Coherent states in optical lattices make natural probes of higher-body coherent dynamics
because small atom-number-dependent energies can lead to significant phase shifts over time.
After a hold time th in the lattice, the initial state evolves to |9(th)〉 '

∏
i |η(th)〉i , where the

state of the i th well is

|η (th)〉i = e−n̄i/2
∑

n

αn
i

√
n!

|n〉i e−iẼi (n)th/h̄, (24)

and Ẽi(ni) is given in equation (12), restoring the index i labeling the lattice site. Snapping the
lattice off at time th, the wavefunctions from each well freely expand for a time te until they fully
overlap, analogous to the diffraction of light through a many-slit grating.

For a uniform lattice, the fringe visibility is [5]

V (th)=
∣∣〈η (th)| â|η (th)〉

∣∣2/n̄. (25)

With no inhomogeneities and setting Ũ3 = 0, we obtain V (th)= e−2n̄[1−cos(Ũ2th/h̄)]. The visibility
for n̄ = 2.5 is plotted as the thin dashed line labeled (i) in figure 3, showing the well-known
collapse and revival dynamics with period t2 = h/Ũ2. For the 87Rb system parameters used here
t2 = 0.52 ms.

The thin line labeled (ii) in figure 3 shows the influence of a ∼5% variation in the two-
body energy U2. We average the ai(t) over a 60 lattice-site diameter spherical distribution.
While the effect of inhomogeneities are important, a larger variation in U2 then expected
would be required to explain the decay of interference fringes after only five revivals as seen
in experiments [5]–[7]. We note that the longer timescale for three-body recombination can
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Figure 4. The figure shows the collapse and revival visibility versus time
for Ũ3 = 200, 150 and 50 Hz assuming negligible inhomogeneities. Curve (i)
corresponds to U3 = 0, ξ = 0.07, α = 1.34, n̄ = 2.5 and ω/2π = 30 kHz. Curves
(ii) and (iii) correspond to smaller three-body energies Ũ3, which could be due to
a nonzero intrinsic U3, a reduction in α, or a change in other system parameters
including ξ or n̄. Three-body revivals occur at multiples of t3 = h/Ũ3, providing
a method for measuring the coherent three-body interaction energy.

be distinguished from the coherent, number conserving interactions derived here by tracking
changes in total atom number, and this appears to be negligible on the revival damping
timescale [26]. Other mechanisms, such as non-adiabatic loading [42, 43] and collisions during
expansion [44] will reduce the initial fringe visibility but do not explain the rapid decay of the
visibility versus hold time th.

To compute the visibility with three-body interactions we numerically evaluate

〈η (th)| â |η (th)〉 = αe−n̄
∑
n=0

n̄n

n!
e−in

[
Ũ2+Ũ3(n−1)/2

]
th/h̄
. (26)

The bold (blue) dashed line labeled (iii) in figure 3 shows the visibility V (th)=

|〈η(th)|â|η(th)〉|
2/n̄ versus th/t2 assuming no inhomogeneities, n̄ = 2.5, and the harmonic

oscillator value β = 1.34 . . . . With ξ = 0.07, U3 = 0, and ω/2π = 30 kHz, the effective three-
body frequency is Ũ3/h ' −200 Hz, and Ũ2/h ' 2.1 kHz. The relatively small effective three-
body interactions have a strong effect on the coherence of the state and the resulting quantum
interference, showing how collapse and revival measurements can be a sensitive probe of
coherent higher-body effects. The dephasing is faster than may have been expected from the
small size of Ũ3 because the three-body energies scale as Ũ3n3 versus Ũ2n2 for two-body
energies, and thus have an increased influence on higher-number components of a coherent
state. Similarly, coherent states with significant n > 4 atom number components will probe the
four- and higher-body interaction energies. The bold (red) solid line labeled (iv) in figure 3
shows the combined effect of both ∼5% inhomogeneities in Ũ2 and three-body interactions.

The decay of the visibility in figure 3 is faster than what is seen in [5]–[7]. Figure 4
illustrates the sensitivity of the evolution of the visibility to the three-body energy scale by
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showing three cases corresponding to Ũ3/h = {−200,−150,−100} Hz. The curves have been
displaced vertically for clarity. Curve (i) for Ũ3/h = −200 Hz corresponds to U3 = 0, β = 1.34,
ξ = 0.07 and ω/2π = 30 kHz. Curve (ii) corresponds to a reduced Ũ3/h = −150 Hz, which
could be the result, for example, of a positive intrinsic three-body energy U3/h = 50 kHz, or a
change in parameters giving either β → 3α/4 or ξ →

√
3ξ/2. Similarly, curve (iii) corresponds

to Ũ3 = 100 Hz, which could be due to a positive intrinsic three-body energy U3/h = 100 kHz,
or to a change in parameters giving either β → β/2 or ξ → ξ/

√
2. The collapse and revival

visibilities are also very sensitive to the average atom number n̄. A smaller value of Ũ3 appears
to agree better with the initial damping seen in [5]–[7], and this may indicate the presence of
a nonzero intrinsic U3. However, accurate measurement of the system parameters is necessary
if a value of the intrinsic U3 is to be obtained using U3 = Ũ3 − δU3. Nevertheless, it is clear
from figure 4 that both intrinsic and induced three-body interactions can be important on
experimentally relevant timescales.

Figure 4 also shows the partial and full revivals resulting from the beating between two- and
three-body frequency scales expected if inhomogeneities are sufficiently reduced. The period for
nearly full three-body revivals t3 = h/Ũ3 gives a direct method of measuring Ũ3. Recently, long
sequences of collapse and revivals showing multiple frequencies have been reported [26]; our
analysis suggests that these may be used to study higher-body interactions in optical lattices.

6. Summary

We have shown that two-body induced virtual excitations of bosons to higher bands in a deep 3D
optical lattice generate effective three-body and higher-body interactions. Although our methods
do not yield the intrinsic higher-body interaction energies Um , we find that even if Um ' 0
there are significant effective interactions that can have a surprisingly strong influence on the
dynamics of non-equilibrium coherent states. The mechanism for higher-body interactions is
based upon the recognition that at low energies the presence of excited (i.e. higher-energy)
vibrational states manifest as m-body terms in an effective Hamiltonian H̃eff. While it is possible
for an effective (or renormalized) m-body interaction to vanish or to be very small due to close
cancellation of the intrinsic (i.e. Um) and induced (i.e. δUm) contributions to Ũm , we do not
expect this to happen in general. It is possible to tune the relative effective m-body interactions
by exploiting Feshbach resonances to control ascat, or by changing the lattice potential. This
suggests intriguing possibilities for probing and controlling the physics of effective field theories
(e.g. effective interactions, running coupling constants and the emergence of non-perturbative
effects) in optical lattices. Using optical lattices to simulate the controlled breakdown of an
effective field theory would be particularly interesting.
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